A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

نویسندگان

  • John Q Liu
  • Dennis Yang
  • Rodney J Folz
چکیده

Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Cytokines in Pathophysiology of Asthma

The worldwide incidence, morbidity and mortality of asthma are increasing dramatically. It is one of the most common disorders encountered in clinical medicine in both children and adults. It affects approximately 5% of the adult population in the western world and its reported incidence is increasing vigorously in many developed nations. A network of a novel mediator known as ‘pleiotropic cyto...

متن کامل

SPHINGOMYELIN METABOLITES A S SECOND MESSENGERS IN AIRWAY SMOOTH MUSCL E CELL P ROLIFERATION

Sphingolipid metabolism was examined in guinea-pig airway smooth muscle cells stimulated by platelet-derived growth factor (PDGF) and 4β-phorbol 12- myristate 13-acetate (PMA), as mitogens and bradykinin (BK) as non-mitogen. Stimulation of the cells by PMA and PDGF for 60 min. at 37°C induced the following changes in sphingolipid metabolites: in cells prelabeled with PH] palmitate, a 1.2 f...

متن کامل

Up-regulation of endothelin receptor function and mRNA expression in airway smooth muscle cells following Sephadex-induced airway inflammation.

The hypothesis that up-regulation of bronchial constrictor endothelin receptors in airway smooth muscle cells may contribute to hyperreactivity during airway inflammation was tested in the present study by quantitative endothelin receptor mRNA analysis and functional responses in ring segments of rat trachea and bronchi. Real time reverse transcription polymerase chain reaction was used to quan...

متن کامل

Effect of diameter on force generation and responsiveness of bronchial segments and rings.

In this study, isovolumic bronchial segments and bronchial rings were used to investigate the influence of airway diameter on smooth muscle force generation and acetylcholine responsiveness. Segments with internal diameters ranging from 1.0-6.0 mm were obtained from the mainstem bronchus of eight pigs. Responses to increasing acetylcholine concentrations were quantified in segments by intralume...

متن کامل

Inhibition of p21 Activated Kinase (PAK) Reduces Airway Responsiveness In Vivo and In Vitro in Murine and Human Airways

The p21-activated protein kinases (Paks) have been implicated in the regulation of smooth muscle contractility, but the physiologic effects of Pak activation on airway reactivity in vivo are unknown. A mouse model with a genetic deletion of Pak1 (Pak1(-/-)) was used to determine the role of Pak in the response of the airways in vivo to challenge with inhaled or intravenous acetylcholine (ACh). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 291 2  شماره 

صفحات  -

تاریخ انتشار 2006